Dé opleidingensite voor hbo en hoger

Master's programme in Financial Engineering

Mälardalen University

  • Beschrijving
  • Overzicht

Are you interested in matehematics and the international world of finance? The Master's programme in Financial Engineering provides you with advanced qualifications in mathematics and finance, from the management of financial portfolios to risk analysis in financial markets. As a graduate you will be in demand for senior positions in the international world of finance. You can find graduates from Financial Engineering all over the world.

The Programme

Financial Engineering is a carefully designed Master's programme, belonging to the very popular educational area of financial engineering. The programme is oriented towards financial real-life problems, and the textbooks have been chosen to support this approach. Focusing on quantitative computer-based methods of financial analysis, the programme provides an advanced basis in mathematics and is a natural continuation of the Bachelor's programme Analytical Finance.

Welcome to Financial Engineering
Ying Ni, programme coordinator

Research

Research is concentrated in financial mathematics, financial engineering, financial and risk management software, actuarial mathematics, applied statistics, stochastic processes and simulation. Advanced financial software and programming languages are systematically used in the teaching. The best students are involved in research activities and the development of experimental financial software.

Employment and Future Prospects

As a graduate of the Financial Engineering programme you will have very competitive advanced qualifications and will be in demand for senior positions in banks, stock exchanges, investment companies, insurance or financial software companies, financial institutions or manufacturing companies.
Alumni from the programme can be found in senior positions all over the world. The best students have the possibility to continue their education at the Ph.D. level at Mälardalen University or at another high-quality educational institution or university anywhere in the world.


Outcomes

The Master's Programme in Financial Engineering will satisfy the growing need of scientifically educated personnel within the finance sector. The Master's Programme in Financial Engineering aims to give the students a good basis for working as financial consultants in financial institutions, which conduct derivative valuation and security management, research departments of banks, insurance companies, and in other private and state organisations on the finance market.

Knowledge and Understanding

On completion of the degree programme the student shall be able to:

  • demonstrate comprehensive knowledge and understanding of fundamental mathematical concepts and principles and how they are applied in problem-solving,
  • demonstrate comprehensive knowledge and understanding of fundamental mathematical concepts, models and methods used in the valuation of financial instruments and their derivatives and be able to explain assumptions and limitations in these models, concepts and methods,
  • demonstrate comprehensive knowledge and understanding of how theories, concepts and methods for optimal capital allocation and risk analysis can be applied to form optimal asset portfolios,
  • demonstrate knowledge and understanding of theories and methods concerning linear and non-linear optimisation, and also
  • demonstrate basic knowledge of programming languages and software of importance to the finance branch.

Aptitudes and Accomplishments

On completion of the degree programme the student shall be able to:

  • give financial problems expressed in non-mathematical language a mathematical formulation and use this for problem-solving,
  • make mathematical models of financial problems and apply mathematical expertise in non- mathematical contexts,
  • use calculation programmes as aids for advanced mathematical processes and for information retrieval and also have a basic knowledge of programming languages and software of importance to the finance branch.
  • express the valuation of financial instruments and their derivatives as mathematical problems and with the aid of calculation programmes solve these problems,
  • formulate complex problems which require optimisation and decision-making and interpret the solutions in the problem's original context,
  • give clear and correct, with regard to both language and content, customised oral and written presentations in English,
  • communicate effectively in accordance with the accepted academic norms of the programme's field of study and write both detailed and well-structured reports with advanced content, and also
  • demonstrate initiative and personal responsibility in his/her future professional life.

Ability to Evaluate and Assess

On completion of the degree programme the student shall be able to:

  • evaluate his/her own strengths and weaknesses, and with conviction question opinions,
  • develop and apply, with personal confidence, his/her own conclusions and assessments and make use of feedback, and also
  • assess complex situations in business and financial activities and take into account scientific, social and ethical aspects.

Language of instruction

The language of instruction is English, which includes all teaching, examination and literature, etc.

Contents

The Master's Programme in Financial Engineering is a two-year natural science programme in Mathematics/Applied Mathematics, which deepens the student's knowledge of mathematics. The programme consists of a compulsory component of 75 credits in Mathematics/Applied Mathematics. Included in this is a degree project. The remaining 45 credits may be chosen freely; within the programme further courses are offered in Mathematics/Applied Mathematics.

The compulsory courses account for the mathematical core of the programme. The concluding compulsory course consists of a degree project comprising 30 credits in Mathematics.

The focus of the programme is placed on real problems in working life, and the literature has been chosen to support this specialisation.

Teaching on the programme consists of lectures, problem-solving lessons and seminars. During the lectures the teacher gives a short introduction to the following part of the course. During the problem-solving lesson the students, under the guidance of the teacher, solve commensurate problems. During these lessons, small groups of students can also present their solutions. The seminars are prepared by the students, in groups, selecting a relevant subject and in groups write a report on the subject, which is presented at the seminar. The student is expected to set aside non-scheduled time for group work and individual study.

The courses are examined both by written final examinations and continually during the progress of the course, in the form of, for example, seminar reports, problem-solving assignments and written tests of knowledge. Three different types of examination methods are employed: portfolio examination, seminar examination and written examination. To pass the portfolio examination the student hands in the answers to the assigned problem-solving exercises to the teacher. To pass the seminar assignment the student will write a report and orally present this at the seminar. Written tests of knowledge during the progress of the course can occur.

The programme consists of courses divided into years as indicated below.

Year 1

Mathematics/Applied Mathematics:
Analytical Finance I, 7.5 credits
Analytical Finance II, 7.5 credits
Software for mathematical statistics and financial applications, 7.5 credits
Applied Matrix Analysis, 7.5 credits

Elective 7.5 credits:
Mathematics/Applied Mathematics:

Portfolio Theory I, 7.5 credits
Stochastic Processes, 7.5 credits

Elective 22.5 credits:
Mathematics/Applied Mathematics:

Actuarial Mathematics, 7.5 credits
Operations Research, 7.5 credits
Simulation, 7.5 credits
Methods of Statistical Inference, 7.5 credits
Time Series Analysis, 7.5 credits

Year 2

Mathematics/Applied Mathematics:
Degree Project in Mathematics, 30 credits
Java and Analytical Finance, 15 credits

Elective 15 credits:
Mathematics/Applied Mathematics:

Differential Equations in Finance, 7.5 credits
Optimisation, 7.5 credits
Portfolio Theory I, 7.5 credits

Optional 7.5 credits:
Mathematics/Applied Mathematics:

Portfolio Theory II, 7.5 credits

Choices within the program

As a student you are guaranteed a place in the above courses of 30 credits in full-time studies or the equivalent in part-time studies. During both years of study, further courses in Mathematics/Applied Mathematics can be included in the programme. The choice of courses presupposes that the student is eligible for the desired course.

The choice of courses can affect the possibilities of fulfilling the degree requirements.

University degree

The degree programme is so designed that the studies will lead towards fulfilment of the requirements for the following degree(s):

  • Master of Science (120 credits) in Mathematics/Applied Mathematics with Specialization in Financial Engineering.
If the programme contains elective or optional components, or if a student chooses not to complete a certain course, the choices made can affect the possibility of fulfilling the degree requirements. For more information about degrees and degree requirements, consult the local degree regulations which are published on the University website.

Niveau WO
Vorm Full-time
Incompany Nee
Open inschrijving Ja
Doorlooptijd 24 maanden
Type Master (HBO-universitair)
Kosten €29380
Les locatie type Op het instituut
Titulatuur Geen titel
Benodigde taalkennis Engels
Gefinancierd Regering
Afronding Diploma
Credits 120